mist

Andrew Banman

Mar 30, 2021

CONTENTS

Mist 1
Quick Start 3
Building 5
3010 MISE . . L e e e e e 5
3.2 mistpython library e e e e e e e e e 5
3.3 Documentation (optional) L. o e e e e e e e e e e e 6
For Developers 7
Credits 9
API 11
6.1 MISE . . . L e e e e e e e e e e e e e e e e 11
6.2 mistalgorithmo e e e e e e 11
6.3 mist:icache L e 11
6.4 MISLIIO . . . ot e e e e e e e e e 12
6.5 MISLIIE . . L e e e e e e e e e e e e e e 12

CHAPTER
ONE

MIST

Mist is a Multivariable Information Theory-based relationship Search Tool. The Mist library API computes the shared
information content of variables that may indicate a functional dependency. The type of IT measurement Mist uses is
configurable, as are many search parameters.

Version 0.1.0
Mist for Python is available on PyPi: <https://pypi.org/project/libmist/>

Mist documentation is available on ReadTheDocs: <https://libmist.readthedocs.io>

https://pypi.org/project/libmist/
https://libmist.readthedocs.io

mist

2 Chapter 1. Mist

CHAPTER
TWO

QUICK START

The easiest way to run Mist is through the Python module. The following minimal example sets up a Mist object for a
simple Symmetric Delta search (the default IT measurement).

import libmist

mist = libmist.Mist ()
mist.load_file('/path/to/data.csv'")
mist.set_outfile('/dev/stdout'")
mist.compute ()

There are numerous functions to configure Mist — below are some of the most important. For a full list read the API
documentation for mist::Mist.

mist.load_ndarray () # load data from a Python.Numpy.ndarray (see docs for,,
—restrictions)

mist.set_tuple_size() # set the number of variables in each tuple
mist.set_measure () # set the Information Theory Measure

mist.set_threads () # set the number of computration threads

This Python syntax is virtually identical to the C++ code you would write for a program using the Mist library, as you
can see in the examples directory.

mist

4 Chapter 2. Quick Start

CHAPTER
THREE

BUILDING

3.1 mist

These packages are required to build the mist library:
* CMake (minimum version 3.5) <https://cmake.org/download/>
* Boost (minimum version 1.58.0) <https://www.boost.org/users/download/>.

Run cmake in out-of-tree build directory:

mkdir /path/to/build
cd /path/to/build
cmake /path/to/mist
make

3.2 mist python library

Additional requirements:
 Python development packages (python3-dev or python-dev).

* Boost Python and Numpy components. For Boost newer than 1.63 use the integrated Boost.Numpy
(libboost-numpy) package. For earlier versions install ndarray/Boost.Numpy <https://github.com/ndarray/
Boost.NumPy>.

Run cmake with BuildPython set to ON:

mkdir /path/to/build

cd /path/to/build

cmake -DBuildPython:BOOL=ON /path/to/mist
make

Note: both the mist and ndarray/Boost.numpy builds use the default python version installed on the system. To use a
different python version, change the FindPythonInterp, FindPythonLibs, and FindNumpy invocations in both packages
to use the same python version.

https://cmake.org/download/
https://www.boost.org/users/download/
https://github.com/ndarray/Boost.NumPy
https://github.com/ndarray/Boost.NumPy

mist

3.3 Documentation (optional)

Additional Requirements
* Doxygen <http://www.doxygen.nl/download.html>
* Sphinx <https://www.sphinx-doc.org/en/master/usage/installation.html>
* Breathe <https://pypi.org/project/breathe/>
* sphinx_rtd_theme <https://github.com/rtfd/sphinx_rtd_theme>
Run cmake with BuildDocs set to ON:

mkdir /path/to/build

cd /path/to/build

cmake —-DBuildDocs:BOOL=0ON /path/to/mist
make Sphinx

And then run the build as above.

6 Chapter 3. Building

http://www.doxygen.nl/download.html
https://www.sphinx-doc.org/en/master/usage/installation.html
https://pypi.org/project/breathe/
https://github.com/rtfd/sphinx_rtd_theme

CHAPTER
FOUR

FOR DEVELOPERS

This project follows the Pitchfork Layout (PFL). Namespaces are encapsulated in separate directories. Any phys-
ical unit must only include headers within its namespace, the root namespace (core), or interface headers in other
namespaces. The build system discourages violations by making it difficult to link objects across namespaces.

Documentation for this project is dynamically generated with Doxygen and Sphinx. Comments in the source following
Javadoc style are included in the docs. Non-documented comments, e.g. implementation notes, developer advice, etc.
follow standard C++ comment style. This README and other documents should be written in the intersection of
Markdown and reStructuredText <https://gist.github.com/dupuy/1855764> for best interoperability.

https://gist.github.com/dupuy/1855764

mist

8 Chapter 4. For Developers

CHAPTER
FIVE

CREDITS

Mist is written by Andrew Banman. It is based on software written by Nikita Sakhanenko. The ideas behind entropy-
based functional dependency come from Information Theory research by David Galas, Nikita Sakhanenko, and James
Kunert.

For copyright information see the LICENSE.txt file included with the source.

mist

10 Chapter 5. Credits

CHAPTER
SIX

API

mist is comprised of logically distinct components encapsulated by namespaces. Classes access other namespaces via
an interface class. Users typically only need to be concerned with classes in the root namespace, whereas developers
will need the rest.

6.1 mist

The root namespace includes composition classes and classes common to the sub-namespaces.

Warning: doxygenclass: Cannot find class “mist::Mist” in doxygen xml output for project “mist” from directory:
build/xml

Warning: doxygenclass: Cannot find class “mist::Variable” in doxygen xml output for project “mist” from
directory: build/xml

6.2 mist::algorithm

Algorithms to divide and conquer Information Theory computations.

Warning: doxygennamespace: Cannot find namespace “mist::algorithm” in doxygen xml output for project
“mist” from directory: build/xml

6.3 mist::cache

Cache intermediate results for performance improvement.

Warning: doxygennamespace: Cannot find namespace “mist::cache” in doxygen xml output for project “mist”
from directory: build/xml

11

mist

6.4 mist::io

Input/Output

Warning: doxygennamespace: Cannot find namespace “mist::i0”” in doxygen xml output for project “mist” from
directory: build/xml

6.5 mist::it

Information Theory definitions and algorithms.

Warning: doxygennamespace: Cannot find namespace “mist::it” in doxygen xml output for project “mist” from
directory: build/xml

12 Chapter 6. API

	Mist
	Quick Start
	Building
	mist
	mist python library
	Documentation (optional)

	For Developers
	Credits
	API
	mist
	mist::algorithm
	mist::cache
	mist::io
	mist::it

