
mist

Andrew Banman

Aug 11, 2021

CONTENTS

1 Mist 1
1.1 Background . 1
1.2 Quick Start . 2
1.3 Installation . 2
1.4 For Developers . 3
1.5 Credits . 4
1.6 References . 4

2 User Guide 5
2.1 Run modes . 5
2.2 Prepare the Data . 6
2.3 Select an appropriate Information Theory Measure . 8
2.4 Define the search Space . 8
2.5 Compute . 10
2.6 Performance Tuning . 11
2.7 Notes . 11

3 API 13
3.1 mist . 13
3.2 mist::algorithm . 16
3.3 mist::cache . 18
3.4 mist::io . 20
3.5 mist::it . 21

Bibliography 25

Index 27

i

ii

CHAPTER

ONE

MIST

MIST is a Multivariable Information Theory-based dependence Search Tool. The Mist library computes entropy-based
measures that detect functional dependencies between variables. Mist provides the libmist library and mistcli Linux
command line tool.

• Mist source is hosted on Github.

• Mist for Python is available on PyPi.

• Mist documentation is hosted on ReadTheDocs.

1.1 Background

A biological system is intrinsically complex and can be viewed as a large set of components, variables, and attributes
that store and transmit information from one another. This information depends on how each component interacts with,
and is related to, other components of the system. Handling the problem of representing and measuring the information
is the goal of Mist.

A central question of this problem is: How can we fully describe the joint probability density of the N variables that
define the system? Characterization of the joint probability distribution is at the heart of describing the mathematical
dependency among the variables. Mist provides a number of tools that are useful in the pursuit for the description and
quantitation of dependences in complex biological systems.

A function between variables defines a deterministic relationship between them, a dependency; it can be as simple as
if X then Y or something more complicated involving many variables. Thus, a functional dependency among variables
implies the existence of a function. See [Galas2014]. Here we focus on the task of finding a functional dependency
without concerning ourselves with the nature of the underlying function.

Mist is designed to quickly find functional dependencies among many variables. It uses model-free Information Theory
measures based on entropy to compute the strength of the dependence. Mist allows us to detect functional dependencies
for any function, involving any number of variables, limited only by processing capabilities and statistical power. This
makes Mist a great tool for paring down a large set of variables into an interesting subset of dependencies, which may
then be studied by other methods. This may be seen as compression of data by identifying redundant variables.

1

https://github.com/andbanman/mist/
https://pypi.org/project/libmist/
https://libmist.readthedocs.io

mist

1.2 Quick Start

The easiest way to run Mist is by using the libmist Python module. The following minimal example sets up an exhaus-
tive search for dependencies between two variables, estimated with the default measurement

import libmist
search = libmist.Search()
search.load_file('/path/to/data.csv')
search.outfile = '/dev/stdout'
search.start()

There are numerous functions to configure Mist – below are some of the most important. For a full list see Mist
documentation and consult the User Guide.

search.load_ndarray() # load data from a Python.Numpy.ndarray (see docs for␣
→˓restrictions)
search.tuple_size # set the number of variables in each tuple
search.measure # set the Information Theory Measure
search.threads # set the number of computration threads

This Python syntax is virtually identical to the C++ code you would write for a program using the Mist library, as you
can see in the examples directory.

1.3 Installation

1.3.1 Docker

Mist can be built into a Docker image with the included docker file

cd /path/to/mist
docker image build . -t mist
docker run --rm -v ./:/mist mist

The default command builds the Mist python module, which can then be run in an interactive session or with python
script, e.g.

docker run --it --rm -v ./:/mist mist python3

1.3.2 mist

These packages are required to build libmist and mistcli:

• CMake (minimum version 3.5)

• Boost (minimum version 1.58.0)

Run cmake in out-of-tree build directory:

mkdir /path/to/build
cd /path/to/build
cmake /path/to/mist
make install

2 Chapter 1. Mist

api.html#_CPPv2N4mist4MistE
api.html#_CPPv2N4mist4MistE
userguide.html

mist

1.3.3 mist python library

Use pip package manager to install libmist:

pip install libmist

Or build and install from source.

Additional build requirements:

• Python development packages (python3-dev or python-dev).

• Boost Python and Numpy components. For Boost newer than 1.63 use the integrated Boost.Numpy (libboost-
numpy) package. For earlier versions install ndarray/Boost.Numpy.

Run cmake with BuildPython set to ON :

mkdir /path/to/build
cd /path/to/build
cmake -DBuildPython:BOOL=ON /path/to/mist
make install

Note: both the mist and ndarray/Boost.numpy builds use the default python version installed on the system. To use a
different python version, change the FindPythonInterp, FindPythonLibs, and FindNumpy invocations in both packages
to use the same python version.

1.3.4 Documentation

Additional Requirements

• Doxygen

• Sphinx

• Breathe

• sphinx_rtd_theme

Run cmake with BuildDoc set to ON :

mkdir /path/to/build
cd /path/to/build
cmake -DBuildDoc:BOOL=ON /path/to/mist
make Sphinx

And then run the build as above.

1.4 For Developers

This project follows the Pitchfork Layout. Namespaces are encapsulated in separate directories. Any physical unit must
only include headers within its namespace, the root namespace (core), or interface headers in other namespaces. The
build system discourages violations by making it awkward to link objects across namespaces.

Documentation for this project is dynamically generated with Doxygen and Sphinx. Comments in the source following
Javadoc style are included in the docs. Non-documented comments, e.g. implementation notes, developer advice, etc.
follow standard C++ comment style.

1.4. For Developers 3

https://github.com/ndarray/Boost.NumPy
http://www.doxygen.nl/download.html
https://www.sphinx-doc.org/en/master/usage/installation.html
https://pypi.org/project/breathe/
https://github.com/rtfd/sphinx_rtd_theme
https://github.com/vector-of-bool/pitchfork

mist

The included .clang-format file defines the code format, and it can should applied with the tools/format.sh
script.

1.5 Credits

Mist is written by Andrew Banman. It is based on software written by Nikita Sakhanenko. The ideas behind entropy-
based functional dependency come from Information Theory research by David Galas, Nikita Sakhanenko, and James
Kunert.

For copyright information see the LICENSE.txt file included with the source.

1.6 References

4 Chapter 1. Mist

CHAPTER

TWO

USER GUIDE

This guide explains how to prepare data for Mist, set up and execute a search, and tune the algorithm for best perfor-
mance. The basic steps are:

1. Prepare the data

2. Select an appropriate IT Measure

3. Define the search space

4. Compute

Here we assume that we have a set of variables representing the components of a system we study and a set of samples
representing multiple measurements of these variables. So, input data is represented by a matrix, where each row
is a variable and each row is a sample, e.g., a measurement or subject. A variable tuple is a small combination of
variables. The set of all variable tuples is the search space. Mist efficiently traverses the search space and computes the
Information Theory measure for each tuple, which in turn allows us to estimate the strength of the dependence among
variables in the tuple.

The procedure of defining a search space and computing the IT measure for each tuple in the space is simply called a
search. Mist uses a parallel algorithm to divide the search among computing threads. The algorithm can be tuned to
improve performance for different kinds of searches.

2.1 Run modes

There are three ways to run Mist. They all use the same Mist C++ library.

2.1.1 Python Module

The libmist Python module is the recommended way to run Mist searches. All of the examples in this guide use the
Python module.

1. Download libmist on PyPi to use the python module.

2. Import the libmist module.

import libmist

All of the classes needed to execute searches are extended to the Python module. For custom applications that need the
full API, use the C++ library directly.

5

api.html
https://pypi.org/project/libmist/

mist

2.1.2 mistcli

Mist provides a statically-compiled Linux command line tool called mistcli. It includes enough Mist features to run
basic searches. This tool is a good option if Python is unavailable or the system is too old to run with standard libraries.

1. Download mistcli from the release page.

2. Run on recent Linux system

Consult the help output for mistcli for instructions.

mistcli -h

2.1.3 C++ Library

Application developers can develop new programs with the Mist API in C++. The mistcli program is the reference
example.

1. Download libmist from the release page or compile from source.

2. Install development headers

3. Link program against libmist

A good procedure is to compile and install from source:

git clone https://github.com/andbanman/mist
mkdir mist/build
cd mist/build
cmake ../
make install

And then add the appropriate linker flags, e.g.

-std=c++14 -llibmist.so

2.2 Prepare the Data

Data should be prepared to meet these requirements:

• Arranged as NxM matrix of 8bit signed integer values, typically with each row a variable.

• Continuous variables discretized into non-negative integer bins (for best performance, bins should be contiguous
and start at 0).

• Missing values represented by a negative integer.

Data can be parsed in row-major (the default, preferred) or column-major order. In row-major order each row is a
variable; in column-major order each column is a variable.

Data can be read from a CSV file, and the parse order is set explicitly

import libmist
search = libmist.Mist()
search.load_file('/path/to/data.csv')

(continues on next page)

6 Chapter 2. User Guide

https://github.com/andbanman/mist/releases
https://github.com/andbanman/mist/releases
https://github.com/andbanman/mist

mist

(continued from previous page)

parse order explicitly set with these methods
search.load_file_row_major('/path/to/data.csv')
search.load_file_column_major('/path/to/data.csv')

or a Python Numpy ndarray. The parse order is determined by the memory layout: if the array is C_CONTIGUOUS (the
default) then it is parsed in row-major order; if the array is F_CONTIGUOUS then it is parsed in column-major order.

x = numpy.ndarray(...)
search.load_ndarray(x)

parse order determined by x.flags

The ndarray is not copied, and so it must exactly match the expected format. Mist with an exception if a requirement
is not met1.

2.2.1 Missing values

During the computation of an Information measure of a tuple, Mist omits rows (samples) that have a missing value in
any of the variables of the tuple. Thus, the effective sample size of the tuple used to calculate the Information measure
is less than or equal to the sample size of each variable. The effective sample size may vary widely depending on the
missing values pattern.

For example, you mave have a missing value rate of about 50% for each variable, but the effective sample size for a
pair of variables may be much smaller than the others.

Variable Tuple Missing or Present? Effective Sample Size
(V0) *****----- 5
(V1) ----****** 6
(V2) ----****** 6
(V0,V1) ----*----- 1
(V0,V2) ----*----- 1
(V1,V2) ----****** 6

In this contrived example, pairs involving V0 have a much smaller effective sample size because its missing value pattern
is opposite to that of the other variables. A similar situation can arise in real data, say when one variable systematically
missed one half the sample population while another variable systematically missed the other half.

Under the hood, Mist computes joint entropy estimations that are sensitive to small sample size. If the effective sample
size is very small, the estimate can have large fluctuations from the true entropy value. Since joint entropy estimations
are used to calculate higher-order measures, such as Symmetric Delta, these fluctuation could lead to spurious results.
That is why you should always check the effective sample size of any tuples with interesting signals, such as potential
outliers or candidates for a functional dependence.

1 Mist does not modify the input data to fit the requirements. We don’t wish to make any invisible changes to the data that could a) inadvertently
introduce bias into the data, or b) make it difficult to reproduce or validate results outside Mist.

2.2. Prepare the Data 7

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

mist

2.3 Select an appropriate Information Theory Measure

Select the measure you want to compute with Mist::set_measure.

import libmist
search = libmist.Mist()
search.measure = "SymmetricDelta"

The appropriate measure depends on the data and the question you are trying to answer. Currently, there are two
measures available: Joint Entropy and Symmetric Delta.

2.3.1 Joint Entropy

An estimate of the joint entropy of two or more variables, computed using the naive approach [Shannon1949].

2.3.2 Symmetric Delta

A novel symmetric measure of functional dependence constructed from joint entropies [Galas2014]. Values are always
reported as positive real numbers2, with larger values indicating stronger signal. Missing values may cause a sign
change for low-signal tuples, but these can be ignored.

2.4 Define the search Space

Mist computes the IT Measure for each tuple in the search space. Currently Mist recognizes two types of search space,
Exhaustive and Custom.

2.4.1 Exhaustive (default) search space

The default search space is the set of all variable tuples. For N variables and tuples size T, the default space contains
(N choose T) tuples. This space is called “exhaustive” or “complete” because it contains all possible unique tuples for
a set of variables.

Set the size of tuples in the default space with Mist::set_tuple_size.

search.tuple_size = 3

Beware of the size of the exhaustive space: a large number of variables and tuple size 3 and greater leads to combina-
torial explosion, e.g., the exhaustive search space of 5000 variables in 3-tuples is over 20 billion tuples!

2 Symmetric Delta, as described in [Galas2014], has negative sign for odd-dimension tuples. In Mist we give the magnitude always so it is clear
what tail of the distribution holds the signal.

8 Chapter 2. User Guide

api.html#_CPPv2N4mist4Mist11set_measureERNSt6stringE
api.html#_CPPv2N4mist4Mist14set_tuple_sizeEi

mist

2.4.2 Custom search space

There are many search problems where you do not need to compute all possible tuples. Perhaps you’re only interested
in functional relationships involving a specific variable, and so you’d like to skip tuples that do not include it.

You can define a smaller search space using the TupleSpace class. A tuple space is made by defining groups of variables,
and then specifying how variables from each group should combine to form the tuples. Follow these steps to define the
custom search space:

1. Create a TupleSpace object

import libmist
ts = libmist.TupleSpace()

2. Define Variable Groups

A Variable Group is simply a named set of variables. Variables are referenced by their position in the matrix, [0,N-1].
Add a group with TupleSpace::addVariableGroup. Variable groups are usually disjoint, but they do not need to be
ordered or contiguous.

ts.addVariableGroup("A", [0,1,2,9])
ts.addVariableGroup("B", [4])

Note that the size of variable groups may impact performance, see below.

3. Define Variable Group Tuples

A Variable Group Tuple (or a group tuple for short) is a set of Variable Groups that define the tuples in the search space.
Add a group tuple with TupleSpace::addVariableGroupTuple.

The group tuple is the blueprint for the variable tuples. An algorithm generates variable tuples by replacing the group
name with variables from that group. Through iteration it generates all variables tuples, e.g. for variable groups
A=[a1,a2,. . . ,aN] and B=[b1,b2,. . . ,bM], the group tuple [A,B] would generate N*M variable tuples [a1,b1], [a1,b2],
. . . , [aN,bM].

Let us illustrate the algorithm through an example:

ts.addVariableGroupTuple(["A", "B"])

this group tuple generates variable tuples:
0,4
1,4
2,4
4,9

You can list a variable group any number of times, in any order:

ts.addVariableGroupTuple(["A", "B", "A"])

this group tuple generates variable tuples:
0,1,4
0,2,4
0,3,4
1,2,4
1,4,9
2,4,9

2.4. Define the search Space 9

api.html#_CPPv2N4mist9algorithm10TupleSpaceE
api.html#_CPPv2N4mist9algorithm10TupleSpace21addVariableGroupTupleERNSt6vectorINSt6stringEEE
userguide.html#tuple-completion-vs-batch-algorithm
api.html#_CPPv2N4mist9algorithm10TupleSpace21addVariableGroupTupleER10tuple_type

mist

Note that the order in a group tuple is not important, so the group tuples “A,B” and “B,A” result in the same set of
variable tuples.

4. Set the TupleSpace

Finally, load the TupleSpace object to set the tuple space. Now, when you run the computation, only the desired tuples
will be included.

search.tuple_space = ts

Note: tuple_space and tuple_size parameters are mutually exclusive. The tuple_space parameter takes precedence.

2.4.3 Preview search space size

You can count the number of tuples contained the tuple space with TupleSpace::count_tuples

search.tuple_space = mist.TupleSpace(5000, 3)
search.tuple_space.count_tuples()
returns 20820835000

2.4.4 Genetics Example

Consider a more realistic example in genetics. Suppose we have a single phenotype of interest and 5000 single nu-
cleotide polymorphisms (SNPs) that might be related. If we are interested only in finding functional dependencies
between two SNPs and the single phenotype, then we should exclude tuples containing only SNPs. The following few
lines of code specifies this example, assuming our phenotype variable is in position 0 with all other variables being
SNPs

ts = mist.TupleSpace()
ts.addVariableGroup("phenotype", [0])
ts.addVariableGroup("genotypes", list(range(1, 5001)))
ts.addVariableGroupTuple(["genotypes", "phenotype"])
search.tuple_space = ts

ts.count_tuples()
returns 12497500

This custom search space reduces the size from roughly 20 billion tuples to 12.5 million.

2.5 Compute

Before starting the computation of information measures you should configure the output file with Mist::set_outfile.
For small search spaces this could be the stdout stream, but more often you will pick a file destination.

search.outfile = "/dev/stdout"

Finally run the computation.

search.start()

10 Chapter 2. User Guide

api.html#_CPPv2NK4mist9algorithm10TupleSpace12count_tuplesEv
api.html#_CPPv2N4mist4Mist11set_outfileERNSt6stringE

mist

This may take anywhere from seconds to days depending on the size of the search space. It is a good idea to start small
to get an idea of the runtime. Start with tuples size 2 based on a set of less than 1000 variables and then increase the
search space.

2.6 Performance Tuning

The most important factors affecting the overall runtime of a search are the size of the search space and the number of
threads. We already covered how to narrow the search space in the previous section. Set the number of threads with
Mist::set_threads.

search.threads = 10

The default number of threads is the maximum allowed by the system (e.g. what you get from the nproc command).
Setting threads equal to 0 implies the maximum allowed.

2.6.1 Advanced

The following are more fine-tuned options that should be considered for advanced uses.

Probability Distribution Algorithms

Counting probability distributions is the most time-consuming part of computing an IT Measure. See
Mist::set_probability_algorithm for a list of available algorithms.

For very “tall” data (many rows for each variable) we can speed up the algorithm by casting each variable as series of
bitsets, rather than using the typical vector representation. This allows faster entropy calculation at the cost of some
memory and computation overhead. This option is not advantageous for “short” data, and disastrous if variables have
many value bins.

It’s worth experimenting with this option if your variable have three or fewer bins, and/or your variables have thousands
or ten’s of thousands of rows.

2.7 Notes

2.6. Performance Tuning 11

api.html#_CPPv2N4mist4Mist11set_threadsEi
api.html#_CPPv2N4mist4Mist25set_probability_algorithmERNSt6stringE

mist

12 Chapter 2. User Guide

CHAPTER

THREE

API

mist is comprised of logically distinct components encapsulated by namespaces. Classes access other namespaces via
an interface class. Users typically only need to be concerned with classes in the root namespace, whereas developers
will need the rest.

3.1 mist

The root namespace includes composition classes and classes common to the sub-namespaces.

class mist::Search
Main user interface for mist runtime.

CPP and Python users instantiate this class, load data, and optionally call various configuration methods to define
the computation. Computations begin with start(). Maintains state in between runs, such as intermediate value
caches for improved performance.

Public Functions

void set_measure(std::string const &measure)
Set the IT Measure to be computed.

• Entropy : Compute only combined entropy.

• SymmetricDelta (default) : A novel symmetric measure of shared information. See Sakhanenko, Galas
in the literature.

void set_cutoff(it::entropy_type cutoff)
Set the minimum IT Measure value to keep in results.

This option is most useful for dealing with very large TupleSpaces, the results for which cannot be stored
in memory or on disk.

void set_probability_algorithm(std::string const &algorithm)
Set the algorithm for generating probability distributions.

• Vector (default) : Process each Variable as a vector. Gives best performance when Variable size is
small or when there are many value bins.

• Bitset : Convert each distinct Variable value into a bitset to leverage bitwise operations. Gives best
performance when Variable size is large and the number of value bins is small.

13

mist

Performance of each algorithm depends strongly on the problem, i.e. the data, and potentially also on the
system. After the number of threads, this parameter has the largest effect on runtime since distribution
generation dominates the computation.

void set_outfile(std::string const &filename)
Set output CSV file.

void set_ranks(int ranks)
Set number of concurrent ranks to use in this Search.

A rank on a computation node is one execution thread. The default ranks is the number of threads allowed
by the node. Setting ranks to 0 causes the system to use the maximum.

void set_start_rank(int rank)
Set the starting rank for this Search.

A Mist search can run in parallel on multiple nodes in a system. For each node, configure a Search with
the starting rank, number of ranks (ie threads) on the node, and total ranks among all nodes. In this way
you can divide the search space among nodes in the system.

The starting rank is the zero-indexed rank number, valid over range [0,total_ranks].

Parameters rank – Zero-indexed rank number

void set_total_ranks(int ranks)
Set the total number of ranks among all participating Searches.

Each thread on each node is counted as a rank. So the total_ranks is the sum of configured ranks (threads)
on each node.

void set_tuple_size(int size)
Set the number of Variables to include in each IT measure computation.

void set_tuple_space(algorithm::TupleSpace const &ts)
Set the custom tuple space for the next computation

Side effects: sets the thread algorithm to TupleSpace so that the tuple space becomes effective immediately.

void set_tuple_limit(long limit)
Set the maximum number of tuples to process. The default it 0, meaning unlimited.

void set_show_progress(bool)
Toggle whether to write program progress to stderr.

When true, an extra thread will be made to watch progress through the TupleSpace. This option is especially
useful for large searches to estimate how long the run will take.

void set_output_intermediate(bool)
Include all subcalculations in the output

void set_cache_enabled(bool)
Enable caching intermediate entropy calculation

void set_cache_size_bytes(unsigned long)
Set maximum size of entropy cache in bytes

void load_file(std::string const &filename)
Load Data from CSV or tab-separated file.

By defualt, the file is loaded in row-major order, i.e. each row is a variable.

Parameters

14 Chapter 3. API

mist

• filename – path to file

• is_row_major – Set to true for row-major variables

Pre each row has an equal number of columns. Load Data from CSV or tab-separated file.

void load_ndarray(np::ndarray const &np)
Load Data from Python Numpy::ndarray.

Data is loaded into the library following a zero-copy guarantee.

Parameters np – ndarray

Pre Array is NxM matrix of the expected dtype and C memory layout.

np::ndarray python_get_results()
Return a Numpy ndarray copy of all results

np::ndarray python_start()
Start search.

Compute the configured IT measure for all Variable tuples in the configured search space. And return up
to tuple_limit number of results.

void start()
Begin computation.

Compute the configured IT measure for all Variable tuples in the configured search space.

std::vector<it::entropy_type> const &get_results()
Return a copy of all results

void printCacheStats()
Print cache statistics for each cache in each thread to stdout.

std::string version()
Return the Search library Version string

class mist::Variable
Variable wraps a pointer to a data column.

Public Types

using data_t = std::int8_t
Variable values must be signed so that negative values can represent missing data, and should be as small
as possible to save space for very large data sets.

Public Functions

Variable(data_ptr src, std::size_t size, std::size_t index, std::size_t bins)
Variable constructor.

Wrap a shared pointer to column data along with metadata.

Parameters

• src – Shared pointer to memory allocated for the data column

• size – Number of rows in the data column

• index – Identifying column index into data matrix

3.1. mist 15

mist

• bins – Number of data value bins

Throws invalid_argument – data stored ptr, size, or bin argument is zero.

Pre src data has been allocated memory for at least size elements.

Pre src data values are binned to a contiguous non-negative integer array starting at 0.

Pre src missing data values are represented by negative integers.

inline bool missing(std::size_t pos) const
Test if data at position is missing.

Throws std::out_of_range –

data_t &at(std::size_t const pos)

Throws out_of_range –

Variable deepCopy()
Variable uses default move and copy constructors that are shallow and maintain const requirement on un-
derlying data. A deep copy made with this extra method.

bool operator==(Variable const &other) const noexcept
Will resort to a deep inspection so two Variables with identical content in different memory locations are
equivalent. Returns false if either Variable has invalid data, e.g. as a sideeffect of std::move.

bool operator!=(Variable const &other) const noexcept
Variable inequality test.

Public Static Functions

static bool missingVal(data_t const val)
Test if value is classified as missing.

3.2 mist::algorithm

Algorithms to divide and conquer Information Theory computations.

namespace mist::algorithm

class TupleSpace
#include <TupleSpace.hpp> Tuple Space defines the set of tuples over which to run a computation search.

Public Functions

int addVariableGroup(std::string const &name, tuple_t const &vars)
Define a named logical group of variables

Parameters
• name – group name
• vars – set of variables in the group, duplicates will be ignored

Throws TupleSpaceException – variable already listed in existing variable group
Returns index of created variable group

16 Chapter 3. API

mist

void addVariableGroupTuple(std::vector<std::string> const &groups)
Add a variable group tuple

The cross product of groups in the group tuple generates a set of variable tuples that will be added to
the TupleSpace by TupleSpaceTupleProducer.

Parameters groups – Array of group names
Throws TupleSpaceException – group does not exists

void addVariableGroupTuple(tuple_t const &groups)
Add a variable group tuple

The cross product of groups in the group tuple generates a set of variable tuples that will be added to
the TupleSpace by TupleSpaceTupleProducer.

Parameters groups – Array of group indexed by order created
Throws TupleSpaceException – group index out of range

std::vector<std::string> names() const
Get variable names

void set_names(std::vector<std::string> const &names)
Set variable names

count_t count_tuples() const
Calculate the size of the tuple space, i.e. count the generated number of tuples.

void traverse(TupleSpaceTraverser &traverser) const
Walk through all tuples in the tuple space

Parameters traverser – Process each tuple with methods defined in specialization

void traverse(count_t start, count_t stop, TupleSpaceTraverser &traverser) const
Walk through as subset of tuples in the tuple space

TupleSpace generates an ordered list of tuples, that can begin at any position in the list.
Parameters

• start – Begin the walk at tuple in position start
• stop – End the walk at tuple in position stop
• traverser – Process each tuple with methods defined in specialization

void traverse_entropy(it::EntropyCalculator &ecalc, TupleSpaceTraverser &traverser) const
Walk through all tuples in the tuple space, computing entropy values as you go.

Some it::Measure classes compute the entropy values of sub-tuples. It is most efficient to compute
these as you walk through the tuple space so intermediary values can be reused many times.

Parameters
• ecalc – it::EntropyCalculator object to perform entropy computations
• traverser – Process each tuple with methods defined in specialization

void traverse_entropy(count_t start, count_t stop, it::EntropyCalculator &ecalc,
TupleSpaceTraverser &traverser) const

Walk through a subset of tuples in the tuple space, computing entropy values as you go.

class TupleSpaceException : public exception

class TupleSpaceTraverser
#include <TupleSpace.hpp> Interface for processing tuples in the TupleSpace

A class can specialize the TupleSpaceTraverser to gain access to the stream of tuples generated by Tu-
pleSpace::traverse family of functions.

Subclassed by mist::algorithm::Worker

3.2. mist::algorithm 17

mist

class Worker : public mist::algorithm::TupleSpaceTraverser
#include <Worker.hpp> The Worker class divides and conquers the tuple search space.

The Worker processes each tuple in the configured search space, or a portion of the search space depending
on the rank parameters. It is common for each computing thread on the system to have a unique Worker
instance.

Public Functions

Worker(tuple_space_ptr const &ts, count_t start, count_t stop, result_t cutoff, entropy_calc_ptr &calc,
std::vector<output_stream_ptr> const &out_streams, measure_ptr const &measure)

Construct and configure a Worker instance.
Parameters

• ts – TupleSpace that defines the tuple search space
• start – Start processing at start tuple number
• stop – Stop processing when stop tuple number is reached
• cutoff – Discard all tuples from output with a measure less than cutoff
• out_streams – Collection OutputStream pointers to send results
• measure – The it::Measure to calculate the results

Worker(tuple_space_ptr const &ts, count_t start, count_t stop, entropy_calc_ptr &calc,
std::vector<output_stream_ptr> const &out_streams, measure_ptr const &measure)

Construct and configure a Worker instance.

Cutoff is not used in the this instance.

void start()
Start the Worker search space execution. Returns when all tuples in the search space have been pro-
cessed.

class WorkerException : public exception

3.3 mist::cache

Cache intermediate results for performance improvement.

namespace mist::cache

Typedefs

using K = Variable::indexes

using V = it::entropy_type

class Cache
#include <Cache.hpp> Cache interface

Subclassed by mist::cache::Flat1D, mist::cache::Flat2D

18 Chapter 3. API

mist

Public Functions

virtual bool has(K const&) = 0
Test that key is in table

virtual void put(K const&, V const&) = 0
Insert value at key.

virtual V get(K const&) = 0
Return value at key.

out_of_range Key not in table

virtual std::size_t size() = 0
Number of entries in table

virtual std::size_t bytes() = 0
Size in bytes of table

inline std::size_t hits()
Number of cache hits

inline std::size_t misses()
Number of cache misses

inline std::size_t evictions()
Number of cache evictions

class Flat1D : public mist::cache::Cache
#include <Flat1D.hpp> Fixed sized associative cache

Public Functions

virtual bool has(key_type const &key)
Test that key is in table

virtual void put(key_type const &key, val_type const &val)
Insert value at key.

virtual val_type get(key_type const &key)
Return value at key.

out_of_range Key not in table

virtual std::size_t size()
Number of entries in table

virtual std::size_t bytes()
Size in bytes of table

class Flat1DException : public exception

class Flat1DOutOfRange : public out_of_range

class Flat2D : public mist::cache::Cache
#include <Flat2D.hpp> Fixed sized associative cache

3.3. mist::cache 19

mist

Public Functions

virtual bool has(key_type const &key)
Test that key is in table

virtual void put(key_type const &key, val_type const &val)
Insert value at key.

virtual val_type get(key_type const &key)
Return value at key.

out_of_range Key not in table

virtual std::size_t size()
Number of entries in table

virtual std::size_t bytes()
Size in bytes of table

class Flat2DException : public exception

class Flat2DOutOfRange : public out_of_range

3.4 mist::io

Input/Output

namespace mist::io

class DataMatrix
#include <DataMatrix.hpp> N x M input data matrix.

Columns are interpreted as variables with each row a sample.

class DataMatrixException : public exception

class FileOutputStream : public mist::io::OutputStream

class FileOutputStreamException : public exception

class FlatOutputStream : public mist::io::OutputStream

Public Functions

void relocate(FlatOutputStream &other)
Move all data in other to this object

class FlatOutputStreamException : public exception

class MapOutputStream : public mist::io::OutputStream

class OutputStream
Subclassed by mist::io::FileOutputStream, mist::io::FlatOutputStream, mist::io::MapOutputStream

20 Chapter 3. API

mist

3.5 mist::it

Information Theory definitions and algorithms.

namespace mist::it

Typedefs

using Bitset = boost::dynamic_bitset<unsigned long long>

using BitsetVariable = std::vector<Bitset>

using BitsetTable = std::vector<BitsetVariable>

using DistributionData = double

using entropy_type = double

using Entropy = std::vector<entropy_type>

Enums

enum d1
Values:

enumerator e0

enumerator size

enum d2
Values:

enumerator e0

enumerator e1

enumerator e01

enumerator size

enum d3
Values:

enumerator e0

enumerator e1

enumerator e2

enumerator e01

enumerator e02

enumerator e12

enumerator e012

enumerator size

3.5. mist::it 21

mist

enum d4
Values:

enumerator e0

enumerator e1

enumerator e2

enumerator e3

enumerator e01

enumerator e02

enumerator e03

enumerator e12

enumerator e13

enumerator e23

enumerator e012

enumerator e013

enumerator e023

enumerator e123

enumerator e0123

enumerator size

class BitsetCounter : public mist::it::Counter
#include <BitsetCounter.hpp> Generates a ProbabilityDistribution from a Variable tuple.

Recasts each Variable as an array of bitsets, one for each bin value. Computes the ProbabilityDistribution
using bitwise AND operation and bit counting algorithm.

class BitsetCounterOutOfRange : public out_of_range

class Counter
#include <Counter.hpp> Abstract class. Generates a Probability Distribution from a Variable tuple

Subclassed by mist::it::BitsetCounter, mist::it::VectorCounter

class Distribution
#include <Distribution.hpp> Joint probability array for N variables

Public Functions

template<class Container>
inline Distribution(Container const &strides)

Construct directly from dimension strides

inline Distribution(Variable::tuple const &vars)
Construct from a Variable tuple

inline void scale(double factor)
Multiply each value in distribution by factor

22 Chapter 3. API

mist

inline void normalize()
Normalize distribution

class DistributionOutOfRange : public out_of_range

class EntropyCalculator

class EntropyCalculatorException : public exception

class EntropyMeasure : public mist::it::Measure

Public Functions

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple) const
Compute the information theory measure with the computation ecalc for the given variables.

Returns final result

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple, Entropy const
&e) const

Compute the information theory measure with the the given variables, using pre-computed entropies.
Only useful for measures that use entropy sub calculations.

virtual std::string header(int d, bool full_output) const
Return a comma-separated header string corresponding to the full results

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns header string

virtual std::vector<std::string> const &names(int d, bool full_output) const
Return array of names for each column in the output

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns array of column names in the output

inline virtual bool full_entropy() const
Whether this measure uses intermediate entropy calculations

class EntropyMeasureException : public exception

class Measure
Subclassed by mist::it::EntropyMeasure, mist::it::SymmetricDelta

Public Functions

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple) const = 0
Compute the information theory measure with the computation ecalc for the given variables.

Returns final result

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple, Entropy const
&entropy) const = 0

Compute the information theory measure with the the given variables, using pre-computed entropies.
Only useful for measures that use entropy sub calculations.

virtual std::string header(int d, bool full_output) const = 0
Return a comma-separated header string corresponding to the full results

3.5. mist::it 23

mist

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns header string

virtual std::vector<std::string> const &names(int d, bool full_output) const = 0
Return array of names for each column in the output

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns array of column names in the output

virtual bool full_entropy() const = 0
Whether this measure uses intermediate entropy calculations

class SymmetricDelta : public mist::it::Measure

Public Functions

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple) const
Compute the information theory measure with the computation ecalc for the given variables.

Returns final result

virtual result_type compute(EntropyCalculator &ecalc, Variable::indexes const &tuple, Entropy const
&e) const

Compute the information theory measure with the the given variables, using pre-computed entropies.
Only useful for measures that use entropy sub calculations.

virtual std::string header(int d, bool full_output) const
Return a comma-separated header string corresponding to the full results

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns header string

virtual std::vector<std::string> const &names(int d, bool full_output) const
Return array of names for each column in the output

Parameters
• d – tuple size
• full_output – whether header should include all subcalculation names

Returns array of column names in the output

inline virtual bool full_entropy() const
Whether this measure uses intermediate entropy calculations

class SymmetricDeltaException : public exception

class VectorCounter : public mist::it::Counter
#include <VectorCounter.hpp> Generates a ProbabilityDistribution from a Variable tuple.

Counts using standard algorithm.

class VectorCounterException : public exception

24 Chapter 3. API

BIBLIOGRAPHY

[Galas2014] Galas, David J et al. “Describing the complexity of systems: multivariable “set complexity” and the
information basis of systems biology.” Journal of computational biology : a journal of computational
molecular cell biology vol. 21,2 (2014): 118-40. doi:10.1089/cmb.2013.0039 PMC

[Shannon1949] Shannon, Claude Elwood, and Warren Weaver. The Mathematical Theory of Communicaton. Univer-
sity of Illinois Press, 1949.

25

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904535/

mist

26 Bibliography

INDEX

M
mist::algorithm (C++ type), 16
mist::algorithm::TupleSpace (C++ class), 16
mist::algorithm::TupleSpace::addVariableGroup

(C++ function), 16
mist::algorithm::TupleSpace::addVariableGroupTuple

(C++ function), 16, 17
mist::algorithm::TupleSpace::count_tuples

(C++ function), 17
mist::algorithm::TupleSpace::names (C++ func-

tion), 17
mist::algorithm::TupleSpace::set_names (C++

function), 17
mist::algorithm::TupleSpace::traverse (C++

function), 17
mist::algorithm::TupleSpace::traverse_entropy

(C++ function), 17
mist::algorithm::TupleSpaceException (C++

class), 17
mist::algorithm::TupleSpaceTraverser (C++

class), 17
mist::algorithm::Worker (C++ class), 17
mist::algorithm::Worker::start (C++ function),

18
mist::algorithm::Worker::Worker (C++ function),

18
mist::algorithm::WorkerException (C++ class),

18
mist::cache (C++ type), 18
mist::cache::Cache (C++ class), 18
mist::cache::Cache::bytes (C++ function), 19
mist::cache::Cache::evictions (C++ function), 19
mist::cache::Cache::get (C++ function), 19
mist::cache::Cache::has (C++ function), 19
mist::cache::Cache::hits (C++ function), 19
mist::cache::Cache::misses (C++ function), 19
mist::cache::Cache::put (C++ function), 19
mist::cache::Cache::size (C++ function), 19
mist::cache::Flat1D (C++ class), 19
mist::cache::Flat1D::bytes (C++ function), 19
mist::cache::Flat1D::get (C++ function), 19
mist::cache::Flat1D::has (C++ function), 19

mist::cache::Flat1D::put (C++ function), 19
mist::cache::Flat1D::size (C++ function), 19
mist::cache::Flat1DException (C++ class), 19
mist::cache::Flat1DOutOfRange (C++ class), 19
mist::cache::Flat2D (C++ class), 19
mist::cache::Flat2D::bytes (C++ function), 20
mist::cache::Flat2D::get (C++ function), 20
mist::cache::Flat2D::has (C++ function), 20
mist::cache::Flat2D::put (C++ function), 20
mist::cache::Flat2D::size (C++ function), 20
mist::cache::Flat2DException (C++ class), 20
mist::cache::Flat2DOutOfRange (C++ class), 20
mist::cache::K (C++ type), 18
mist::cache::V (C++ type), 18
mist::io (C++ type), 20
mist::io::DataMatrix (C++ class), 20
mist::io::DataMatrixException (C++ class), 20
mist::io::FileOutputStream (C++ class), 20
mist::io::FileOutputStreamException (C++

class), 20
mist::io::FlatOutputStream (C++ class), 20
mist::io::FlatOutputStream::relocate (C++

function), 20
mist::io::FlatOutputStreamException (C++

class), 20
mist::io::MapOutputStream (C++ class), 20
mist::io::OutputStream (C++ class), 20
mist::it (C++ type), 21
mist::it::Bitset (C++ type), 21
mist::it::BitsetCounter (C++ class), 22
mist::it::BitsetCounterOutOfRange (C++ class),

22
mist::it::BitsetTable (C++ type), 21
mist::it::BitsetVariable (C++ type), 21
mist::it::Counter (C++ class), 22
mist::it::d1 (C++ enum), 21
mist::it::d1::e0 (C++ enumerator), 21
mist::it::d1::size (C++ enumerator), 21
mist::it::d2 (C++ enum), 21
mist::it::d2::e0 (C++ enumerator), 21
mist::it::d2::e01 (C++ enumerator), 21
mist::it::d2::e1 (C++ enumerator), 21

27

mist

mist::it::d2::size (C++ enumerator), 21
mist::it::d3 (C++ enum), 21
mist::it::d3::e0 (C++ enumerator), 21
mist::it::d3::e01 (C++ enumerator), 21
mist::it::d3::e012 (C++ enumerator), 21
mist::it::d3::e02 (C++ enumerator), 21
mist::it::d3::e1 (C++ enumerator), 21
mist::it::d3::e12 (C++ enumerator), 21
mist::it::d3::e2 (C++ enumerator), 21
mist::it::d3::size (C++ enumerator), 21
mist::it::d4 (C++ enum), 22
mist::it::d4::e0 (C++ enumerator), 22
mist::it::d4::e01 (C++ enumerator), 22
mist::it::d4::e012 (C++ enumerator), 22
mist::it::d4::e0123 (C++ enumerator), 22
mist::it::d4::e013 (C++ enumerator), 22
mist::it::d4::e02 (C++ enumerator), 22
mist::it::d4::e023 (C++ enumerator), 22
mist::it::d4::e03 (C++ enumerator), 22
mist::it::d4::e1 (C++ enumerator), 22
mist::it::d4::e12 (C++ enumerator), 22
mist::it::d4::e123 (C++ enumerator), 22
mist::it::d4::e13 (C++ enumerator), 22
mist::it::d4::e2 (C++ enumerator), 22
mist::it::d4::e23 (C++ enumerator), 22
mist::it::d4::e3 (C++ enumerator), 22
mist::it::d4::size (C++ enumerator), 22
mist::it::Distribution (C++ class), 22
mist::it::Distribution::Distribution (C++

function), 22
mist::it::Distribution::normalize (C++ func-

tion), 22
mist::it::Distribution::scale (C++ function), 22
mist::it::DistributionData (C++ type), 21
mist::it::DistributionOutOfRange (C++ class),

23
mist::it::Entropy (C++ type), 21
mist::it::entropy_type (C++ type), 21
mist::it::EntropyCalculator (C++ class), 23
mist::it::EntropyCalculatorException (C++

class), 23
mist::it::EntropyMeasure (C++ class), 23
mist::it::EntropyMeasure::compute (C++ func-

tion), 23
mist::it::EntropyMeasure::full_entropy (C++

function), 23
mist::it::EntropyMeasure::header (C++ func-

tion), 23
mist::it::EntropyMeasure::names (C++ function),

23
mist::it::EntropyMeasureException (C++ class),

23
mist::it::Measure (C++ class), 23
mist::it::Measure::compute (C++ function), 23

mist::it::Measure::full_entropy (C++ function),
24

mist::it::Measure::header (C++ function), 23
mist::it::Measure::names (C++ function), 24
mist::it::SymmetricDelta (C++ class), 24
mist::it::SymmetricDelta::compute (C++ func-

tion), 24
mist::it::SymmetricDelta::full_entropy (C++

function), 24
mist::it::SymmetricDelta::header (C++ func-

tion), 24
mist::it::SymmetricDelta::names (C++ function),

24
mist::it::SymmetricDeltaException (C++ class),

24
mist::it::VectorCounter (C++ class), 24
mist::it::VectorCounterException (C++ class),

24
mist::Search (C++ class), 13
mist::Search::get_results (C++ function), 15
mist::Search::load_file (C++ function), 14
mist::Search::load_ndarray (C++ function), 15
mist::Search::printCacheStats (C++ function), 15
mist::Search::python_get_results (C++ func-

tion), 15
mist::Search::python_start (C++ function), 15
mist::Search::set_cache_enabled (C++ function),

14
mist::Search::set_cache_size_bytes (C++ func-

tion), 14
mist::Search::set_cutoff (C++ function), 13
mist::Search::set_measure (C++ function), 13
mist::Search::set_outfile (C++ function), 14
mist::Search::set_output_intermediate (C++

function), 14
mist::Search::set_probability_algorithm

(C++ function), 13
mist::Search::set_ranks (C++ function), 14
mist::Search::set_show_progress (C++ function),

14
mist::Search::set_start_rank (C++ function), 14
mist::Search::set_total_ranks (C++ function), 14
mist::Search::set_tuple_limit (C++ function), 14
mist::Search::set_tuple_size (C++ function), 14
mist::Search::set_tuple_space (C++ function), 14
mist::Search::start (C++ function), 15
mist::Search::version (C++ function), 15
mist::Variable (C++ class), 15
mist::Variable::at (C++ function), 16
mist::Variable::data_t (C++ type), 15
mist::Variable::deepCopy (C++ function), 16
mist::Variable::missing (C++ function), 16
mist::Variable::missingVal (C++ function), 16
mist::Variable::operator!= (C++ function), 16

28 Index

mist

mist::Variable::operator== (C++ function), 16
mist::Variable::Variable (C++ function), 15

Index 29

	Mist
	Background
	Quick Start
	Installation
	Docker
	mist
	mist python library
	Documentation

	For Developers
	Credits
	References

	User Guide
	Run modes
	Python Module
	mistcli
	C++ Library

	Prepare the Data
	Missing values

	Select an appropriate Information Theory Measure
	Joint Entropy
	Symmetric Delta

	Define the search Space
	Exhaustive (default) search space
	Custom search space
	Preview search space size
	Genetics Example

	Compute
	Performance Tuning
	Advanced
	Probability Distribution Algorithms

	Notes

	API
	mist
	mist::algorithm
	mist::cache
	mist::io
	mist::it

	Bibliography
	Index

